Documentation
Index
A list of all documentation sorted by module.
QuantumInformation.QuantumInformationQuantumInformation.ChannelBasisIteratorQuantumInformation.DynamicalMatrixQuantumInformation.IdentityChannelQuantumInformation.KrausOperatorsQuantumInformation.StinespringQuantumInformation.SuperOperatorQuantumInformation.SuperOperatorQuantumInformation.UnitaryChannelBase.convertBase.convertBase.convertBase.convertBase.convertBase.convertBase.convertBase.convertBase.convertQuantumInformation.applychannelQuantumInformation.applychannelQuantumInformation.applychannelQuantumInformation.applychannelQuantumInformation.bloch_vectorQuantumInformation.braQuantumInformation.bures_angleQuantumInformation.bures_distanceQuantumInformation.concurrenceQuantumInformation.diamond_distanceQuantumInformation.fidelityQuantumInformation.fidelity_sqrtQuantumInformation.gate_fidelityQuantumInformation.groverQuantumInformation.hadamardQuantumInformation.hermitianbasisQuantumInformation.hs_distanceQuantumInformation.iscpQuantumInformation.istniQuantumInformation.istpQuantumInformation.js_divergenceQuantumInformation.ketQuantumInformation.ketbraQuantumInformation.ketbraQuantumInformation.kl_divergenceQuantumInformation.log_negativityQuantumInformation.max_entangledQuantumInformation.max_mixedQuantumInformation.negativityQuantumInformation.norm_diamondQuantumInformation.norm_hsQuantumInformation.norm_traceQuantumInformation.permutesystemsQuantumInformation.pptQuantumInformation.projQuantumInformation.ptraceQuantumInformation.ptraceQuantumInformation.ptraceQuantumInformation.ptransposeQuantumInformation.ptransposeQuantumInformation.purityQuantumInformation.qftQuantumInformation.relative_entropyQuantumInformation.resQuantumInformation.reshuffleQuantumInformation.shannon_entropyQuantumInformation.shannon_entropyQuantumInformation.superfidelityQuantumInformation.trace_distanceQuantumInformation.unresQuantumInformation.vonneumann_entropyQuantumInformation.werner_state
QuantumInformation.QuantumInformation — ModuleMain module for QuantumInformation.jl – a Julia package for numerical computation in quantum information theory.
QuantumInformation.ChannelBasisIterator — TypeQuantumInformation.DynamicalMatrix — TypeT: quantum channel map.
Representation of quantum channel by Dynamical matrix operators.
QuantumInformation.IdentityChannel — TypeT: quantum channel map.
Representation of identity channel.
QuantumInformation.KrausOperators — TypeT: quantum channel map.
Representation of quantum channel by Kraus operators.
QuantumInformation.Stinespring — TypeT: quantum channel map.
Stinespring representation of quantum channel.
QuantumInformation.SuperOperator — TypeT: quantum channel map.
Representation of quantum channel by super-operator.
QuantumInformation.SuperOperator — MethodSuperOperator(m)
channel: quantum channel map.idim: square root of the super-operator matrix input dimension.odim: square root of the super-operator matrix output dimension.
Transforms quntum channel into super-operator matrix.
QuantumInformation.UnitaryChannel — TypeT: quantum channel map.
Representation of unitary channel.
Base.convert — Methodconvert(_, Φ)
- ?: type.
Φ: list of Kraus operators.
Transforms list of Kraus operators into dynamical matrix.
Base.convert — Methodconvert(_, Φ)
- ?: type.
Φ: super-operator matrix.
Transforms super-operator matrix into dynamical matrix.
Base.convert — Methodconvert(_, Φ)
- ?: type.
Φ: dynamical matrix.
Transforms dynamical matrix into list of Kraus operators.
Base.convert — Methodconvert(_, Φ)
- ?: type.
Φ: super-operator matrix.
Transforms super-operator matrix into list of Kraus operators.
Base.convert — Methodconvert(_, Φ)
- ?: type.
Φ: dynamical matrix.
Transforms dynamical matrix into Stinespring representation of quantum channel.
Base.convert — Methodconvert(_, Φ)
- ?: type.
Φ: list of Kraus operators.
Transforms list of Kraus operators into Stinespring representation of quantum channel.
Base.convert — Methodconvert(_, Φ)
- ?: type.
Φ: super-operator matrix.
Transforms super-operator matrix into Stinespring representation of quantum channel.
Base.convert — Methodconvert(_, Φ)
- ?: type.
Φ: dynamical matrix.
Transforms dynamical matrix into super-operator matrix.
Base.convert — Methodconvert(_, Φ)
- ?: type.
Φ: list of Kraus operators.
Transforms list of Kraus operators into super-operator matrix.
QuantumInformation.applychannel — Methodapplychannel(Φ, ρ)
Φ: list of vectors.ρ: input matrix.
Return application of channel Φonρ`. Kraus representation of quantum channel $\Phi$ is a set $\{K_i\}_{i\in I}$ of bounded operators on $\mathcal{H}$ such that $\sum_{i\in I} K_i^\dagger K_i = \mathcal{1}$. Then $\Phi(\rho)=\sum_{i\in I} K_i \rho K_i^\dagger$.
QuantumInformation.applychannel — Methodapplychannel(Φ, ρ)
Φ: Stinespring representation of quantum channel.ρ: quantum state.dims: dimensions of registers ofρ.
Application of Stinespring representation of quantum channel into state ρ.
QuantumInformation.applychannel — Methodapplychannel(Φ, ρ)
Φ: super-operator matrix.ρ: quantum state.
Application of super-operator matrix into state ρ.
QuantumInformation.applychannel — Methodapplychannel(Φ, ρ)
Φ: dynamical matrix.ρ: quantum state.
Application of dynamical matrix into state ρ.
QuantumInformation.bloch_vector — Methodbloch_vector(ρ)
ρ: input qubit density matrix.
Return the Bloch vector corresponding to the inpu quit state.
QuantumInformation.bra — Methodbra(val, dim)
val: non-zero entry - label.dim: length of the vector
Return Hermitian conjugate $\langle val| = |val\rangle^\dagger$ of the ket with the same label.
QuantumInformation.bures_angle — Methodbures_angle(ρ, σ)
ρ: quantum state.σ: quantum state.
Return Bures angle between quantum states ρ and σ.
QuantumInformation.bures_distance — Methodbures_distance(ρ, σ)
ρ: quantum state.σ: quantum state.
Return Bures distance between quantum states ρ and σ.
QuantumInformation.concurrence — MethodQuantumInformation.diamond_distance — Methoddiamond_distance(Φ1, Φ2, args)
Φ1: DynamicalMatrixΦ2: DynamicalMatrix
Return diamond distance between dynamical matrices Φ1 and Φ2.
QuantumInformation.fidelity — MethodQuantumInformation.fidelity_sqrt — MethodQuantumInformation.gate_fidelity — MethodQuantumInformation.grover — MethodQuantumInformation.hadamard — MethodQuantumInformation.hermitianbasis — Methodhermitianbasis(T, dim)
dim: dimensions of the matrix.
Returns elementary hermitian matrices of dimension dim x dim.
QuantumInformation.hs_distance — MethodQuantumInformation.iscp — FunctionΦ: A subtype of AbstractQuantumOperation.atol: tolerance of approximation.
Checks if an object is completely positive.
QuantumInformation.istni — FunctionΦ: A subtype of AbstractQuantumOperation.atol: tolerance of approximation.
Checks if an object is trace non-increasing.
QuantumInformation.istp — FunctionΦ: A subtype of AbstractQuantumOperation.atol: tolerance of approximation.
Checks if an object is trace preserving.
QuantumInformation.js_divergence — Methodjs_divergence(ρ, σ)
ρ: quantum state.σ: quantum state.
Return Jensen–Shannon divergence of quantum state ρ with respect to σ.
QuantumInformation.ket — Methodket(val, dim)
val: non-zero entry - label.dim: length of the vector.
Return complex column vector $|val\rangle$ of unit norm describing quantum state.
QuantumInformation.ketbra — Methodvalk: non-zero entry - label.valb: non-zero entry - label.idim: length of the ket vectorodim: length of the bra vector
Return outer product $|valk\rangle\langle vakb|$ of states $|valk\rangle$ and $|valb\rangle$.
QuantumInformation.ketbra — Methodketbra(valk, valb, dim)
valk: non-zero entry - label.valb: non-zero entry - label.dim: length of the ket and bra vectors
Return outer product $|valk\rangle\langle vakb|$ of states $|valk\rangle$ and $|valb\rangle$.
QuantumInformation.kl_divergence — Methodkl_divergence(ρ, σ)
ρ: quantum state.σ: quantum state.
Return Kullback–Leibler divergence of quantum state ρ with respect to σ.
QuantumInformation.log_negativity — Methodlog_negativity(ρ, dims, sys)
ρ: quantum state.dims: dimensions of subsystems.sys: transposed subsystem.
Return log negativity of quantum state ρ.
QuantumInformation.max_entangled — Methodmax_entangled(d)
d: length of the vector.
Return maximally entangled state $\frac{1}{\sqrt{d}}\sum_{i=0}^{\sqrt{d}-1}|ii\rangle$ of length $\sqrt{d}$.
QuantumInformation.max_mixed — Methodmax_mixed(d)
d: length of the vector.
Return maximally mixed state $\frac{1}{d}\sum_{i=0}^{d-1}|i\rangle\langle i |$ of length $d$.
QuantumInformation.negativity — Methodnegativity(ρ, dims, sys)
ρ: quantum state.dims: dimensions of subsystems.sys: transposed subsystem.
Return negativity of quantum state ρ.
QuantumInformation.norm_diamond — Functionnorm_diamond(Φ)
norm_diamond(Φ, method)
norm_diamond(Φ, method, eps)
Φ: DynamicalMatrix
Return diamond norm of dynamical matrix Φ.
QuantumInformation.norm_hs — MethodQuantumInformation.norm_trace — MethodQuantumInformation.permutesystems — Methodpermutesystems(ρ, dims, systems)
ρ: input state.dims: dimensions of registers ofρ.systems: permuted registers.
Returns state ρ with permuted registers denoted by systems.
QuantumInformation.ppt — Methodppt(ρ, dims, sys)
ρ: quantum state.dims: dimensions of subsystems.sys: transposed subsystem.
Return minimum eigenvalue of positive partial transposition of quantum state ρ.
QuantumInformation.proj — Methodproj(ψ)
ket: input column vector.
Return outer product $|ket\rangle\langle ket|$ of ket.
QuantumInformation.ptrace — Methodptrace(ρ, idims, sys)
ρ: quantum state.idims: dimensins of subsystems.sys: traced subsystem.
QuantumInformation.ptrace — Methodptrace(ρ, idims, isystems)
ρ: quantum state.idims: dimensins of subsystems.isystems: traced subsystems.
Return partial trace of matrix ρ over the subsystems determined by isystems.
QuantumInformation.ptrace — Methodptrace(ψ, idims, sys)
ψ: quantum state pure state (ket).idims: dimensins of subsystems - only bipartite states accepted.sys: traced subsystem.
QuantumInformation.ptranspose — Methodptranspose(ρ, idims, sys)
ρ: quantum state.idims: dimensins of subsystems.sys: transposed subsystem.
QuantumInformation.ptranspose — Methodptranspose(ρ, idims, isystems)
ρ: quantum state.idims: dimensins of subsystems.isystems: transposed subsystems.
Return partial transposition of matrix ρ over the subsystems determined by isystems.
QuantumInformation.purity — Methodpurity(ρ)
ρ: matrix.
Return the purity of ρ ∈ [1/d, 1]
QuantumInformation.qft — MethodQuantumInformation.relative_entropy — Methodrelative_entropy(ρ, σ)
ρ: quantum state.σ: quantum state.
Return quantum relative entropy of quantum state ρ with respect to σ.
QuantumInformation.res — Methodres(ρ)
ρ: input matrix.
Returns vec(ρ.T). Reshaping maps matrix ρ into a vector row by row.
QuantumInformation.reshuffle — Methodreshuffle(ρ)
ρ: reshuffled matrix.
Performs reshuffling of indices of a matrix. Given multiindexed matrix $M_{(m,μ),(n,ν)}$ it returns matrix $M_{(m,n),(μ,ν)}$.
QuantumInformation.shannon_entropy — MethodQuantumInformation.shannon_entropy — Methodshannon_entropy(x)
x: real number.
Return binary Shannon entorpy given by $-x \log(x) - (1 - x) \log(1 - x)$.
QuantumInformation.superfidelity — Methodsuperfidelity(ρ, σ)
ρ: quantum state.σ: quantum state.
Return superfidelity between quantum states ρ and σ.
QuantumInformation.trace_distance — MethodQuantumInformation.unres — Methodunres(ρ)
ϕ: input matrix.
Return de-reshaping of the vector into a matrix.
QuantumInformation.vonneumann_entropy — MethodQuantumInformation.werner_state — Methodwerner_state(d, α)
d: length of the vector.α: real number from [0, 1].
Returns Werner state given by $\frac{\alpha}{d}\left(\sum_{i=0}^{\sqrt{d}-1}|ii\rangle\right) \left(\sum_{i=0}^{\sqrt{d}-1}\langle ii|\right)+ \frac{1-\alpha}{d}\sum_{i=0}^{d-1}|i\rangle\langle i|$.