Documentation

Index

A list of all documentation sorted by module.

Base.convertMethod
  • ?: type.
  • Φ: list of Kraus operators.

Transforms list of Kraus operators into dynamical matrix.

source
Base.convertMethod
  • ?: type.
  • Φ: super-operator matrix.

Transforms super-operator matrix into dynamical matrix.

source
Base.convertMethod
  • ?: type.
  • Φ: dynamical matrix.

Transforms dynamical matrix into list of Kraus operators.

source
Base.convertMethod
  • ?: type.
  • Φ: super-operator matrix.

Transforms super-operator matrix into list of Kraus operators.

source
Base.convertMethod
  • ?: type.
  • Φ: dynamical matrix.

Transforms dynamical matrix into Stinespring representation of quantum channel.

source
Base.convertMethod
  • ?: type.
  • Φ: list of Kraus operators.

Transforms list of Kraus operators into Stinespring representation of quantum channel.

source
Base.convertMethod
  • ?: type.
  • Φ: super-operator matrix.

Transforms super-operator matrix into Stinespring representation of quantum channel.

source
Base.convertMethod
  • ?: type.
  • Φ: dynamical matrix.

Transforms dynamical matrix into super-operator matrix.

source
Base.convertMethod
  • ?: type.
  • Φ: list of Kraus operators.

Transforms list of Kraus operators into super-operator matrix.

source
QuantumInformation.applychannelMethod
  • Φ: list of vectors.
  • ρ: input matrix.

Return application of channel Φonρ`. Kraus representation of quantum channel $\Phi$ is a set $\{K_i\}_{i\in I}$ of bounded operators on $\mathcal{H}$ such that $\sum_{i\in I} K_i^\dagger K_i = \mathcal{1}$. Then $\Phi(\rho)=\sum_{i\in I} K_i \rho K_i^\dagger$.

source
QuantumInformation.applychannelMethod
  • Φ: Stinespring representation of quantum channel.
  • ρ: quantum state.
  • dims: dimensions of registers of ρ.

Application of Stinespring representation of quantum channel into state ρ.

source
QuantumInformation.braMethod
  • val: non-zero entry - label.
  • dim: length of the vector

Return Hermitian conjugate $\langle val| = |val\rangle^\dagger$ of the ket with the same label.

source
QuantumInformation.combineMethod
  • basis: A basis represented by a sub-type of AbstractMatrixBasis.
  • v: Vector of coefficients.

Returns a matrix constructed from the basis elements weighted by the coefficients in v.

source
QuantumInformation.iscpFunction
  • Φ: A subtype of AbstractQuantumOperation.
  • atol: tolerance of approximation.

Checks if an object is completely positive.

source
QuantumInformation.iscptniFunction
  • Φ: A subtype of AbstractQuantumOperation.
  • atol: tolerance of approximation.

Checks if an object is completely positive and trace non-increasing.

source
QuantumInformation.iscptpFunction
  • Φ: A subtype of AbstractQuantumOperation.
  • atol: tolerance of approximation.

Checks if an object is completely positive and trace preserving.

source
QuantumInformation.istniFunction
  • Φ: A subtype of AbstractQuantumOperation.
  • atol: tolerance of approximation.

Checks if an object is trace non-increasing.

source
QuantumInformation.istpFunction
  • Φ: A subtype of AbstractQuantumOperation.
  • atol: tolerance of approximation.

Checks if an object is trace preserving.

source
QuantumInformation.ketMethod
  • val: non-zero entry - label.
  • dim: length of the vector.

Return complex column vector $|val\rangle$ of unit norm describing quantum state.

source
QuantumInformation.ketbraMethod
  • valk: non-zero entry - label.
  • valb: non-zero entry - label.
  • idim: length of the ket vector
  • odim: length of the bra vector

Return outer product $|valk\rangle\langle vakb|$ of states $|valk\rangle$ and $|valb\rangle$.

source
QuantumInformation.ketbraMethod
  • valk: non-zero entry - label.
  • valb: non-zero entry - label.
  • dim: length of the ket and bra vectors

Return outer product $|valk\rangle\langle vakb|$ of states $|valk\rangle$ and $|valb\rangle$.

source
QuantumInformation.mixedradix2numberMethod
  • digits: Vector of coefficients in mixed radix representation.
  • radices: Vector of mixed radices.

Returns the integer number corresponding to the mixed radix representation.

source
QuantumInformation.ptraceMethod
  • ψ: quantum state pure state (ket).
  • idims: dimensins of subsystems - only bipartite states accepted.
  • sys: traced subsystem.
source
QuantumInformation.representMethod
  • basis: A basis represented by a sub-type of AbstractMatrixBasis.
  • m: Matrix to be represented in the basis.

Returns a vector of coefficients of the matrix m in the basis basis.

source
QuantumInformation.reshuffleMethod
  • ρ: reshuffled matrix.

Performs reshuffling of indices of a matrix. Given multiindexed matrix $M_{(m,μ),(n,ν)}$ it returns matrix $M_{(m,n),(μ,ν)}$.

source
QuantumInformation.werner_stateMethod
  • d: length of the vector.
  • α: real number from [0, 1].

Returns Werner state given by $\frac{\alpha}{d}\left(\sum_{i=0}^{\sqrt{d}-1}|ii\rangle\right) \left(\sum_{i=0}^{\sqrt{d}-1}\langle ii|\right)+ \frac{1-\alpha}{d}\sum_{i=0}^{d-1}|i\rangle\langle i|$.

source